Global Intelligence ​Trust
Menu

Solar Energy: Enhancing Drone Technology

8/8/2016

0 Comments

 
Picture
      The key distinction between drones and other aircraft is their ability to fly and operate autonomously, hence the name unmanned aerial vehicles (UAV). With neither the risks nor limitations of having a human onboard, drones can reach higher altitudes and operate for extended periods of time, while controls are “manned”, or monitored, by remotes and computer systems on the ground. The combination of autonomy and advanced technology has allowed drones to take on a variety of functions, such as carrying and delivering goods, surveilling areas of land, collecting data and capturing images for both military and civilian missions (1).
 
     Engineering a power source that can last for days/weeks and not burden the device with excessive weight is a constant challenge in aeronautics. Drones for civilian use are usually powered by removable battery packs that last for less than an hour before returning to the ground for replacement (2). Those used for extended surveillance and reconnaissance require much larger power sources to carry the weight of multi-rotors and actuators (i.e. cameras, weapons, radars, sensors), which in total can range from below 2kg and over 600kg (1). For high endurance missions lasting days or weeks, 80-90% of the gross weight is in fuel capacity and 10-20% of the weight in the actuators (1).
 
     Solar-powered drones have proven to be a much more efficient source of energy for drones traveling long distances and over extended periods of time. The use of solar cells not only offers a constant stream of energy to operate the vehicle, but also greatly reduces the overall weight. AeroVironment, a leading energy and aeronautics company in California, designed some of the most groundbreaking solar-powered aircrafts—Solar Challenger, Pathfinder, and Pathfinder-Plus (3). Although these were manned aircrafts, AeroVironment also has a division for unmanned aircraft systems, which may foreseeably be integrated with their solar-energy initiatives.
 
     Solar-powered drones still require research and experimentation before they can be fully implemented. However, the opportunities and benefits are clear and the industry has become increasingly competitive, with energy, aeronautic innovation, and even digital media companies involved. Solar Impulse is one company working towards clean energy aircrafts. Most recently, the company’s Solar Impulse 2 completed a 43,000 km flight on no fuel and solar energy alone. Bertrand Piccard, the 58-year-old seasoned pilot, told reporters, “We have shown that the plane could fly forever. The limit is the pilot.” (4) Facebook and Alphabet, Google’s parent company, are developing technologies in their projects known as Aquilas and Google Titan to deliver internet connection to any part of the world that still lacks access (5). These missions require devices to sustain itself at high altitudes, 18,000 to 27,000 meters above the ground, and adapt to unexpected weather conditions for a continuous 3 months; current tests remain far from the goal, as Aquila has flown up to 655 meters above ground and for a 96-minute period (6).
 
     The vision for solar-powered drone technology has yet to be perfected and authorized under government regulation. As mentioned earlier, photovoltaic technology has proven to be sufficient for fueling aircrafts without interfering with the vehicles’ aerodynamics. However, the conditions for which drones are expected to experience include high pressure, extreme temperatures, and fluctuating weather conditions. With this in mind, researchers have identified that only 5 out of 20+ technologies (crystalline silicon (c-Si), gallium-arsenide (GaAs), amorphous silicon, copper-indium-gallium-selenide and thin gallium-arsenide based photovoltaics) can withstand the conditions described above (7). Furthermore, research around photovoltaic technology specifically for drones requires a different standard for measurements and data collection because the optimal solar panel for powering a drone is not necessarily the technology with the highest energy yield, but the highest power-to-mass and power-to-area ratios (PUAV) (7). Currently, solar-powered drone technology is somewhat dependent upon existing photovoltaic research, until more data can be collected and solar energy systems can be understood in collaboration with aerial vehicles.
 
     Finding a balance between mass and power sources in drone technology is not the only challenge that innovators are faced with. Researchers and engineers are also racing against the clock as more competition enters the industry and increasing government regulation is put in place. The U.S. Federal Aviation Administration’s (FAA) UAS Rule (Part 107), due to take effect on August 29th, 2016, limits vehicles’ weight at 25kg and altitude at 121.92 meters off the ground unless approved under a certificate of waiver (8). Increasing government regulations may hinder the progress in solar-powered drone research, especially for purposes of testing high endurance and high altitude vehicles. On the other hand, as more companies and organizations occupy the aerial landscape, partnerships across sectors will rise. Facebook and Alphabet are just two of many companies that have found opportunities through such partnerships.
 
     Incorporating solar energy with drone technology has shown benefits beyond providing clean energy. Solar-powered systems will allow vehicles to spend longer durations in the air and maintain constant surveillance, leading to greater data and accuracy of information collected. These aspects are appealing to industries that may not have had a part in drone technology before, like those in media or telecommunications. Although this new area of research may lead to some interferences from competitors and regulators, other businesses and governments can also offer great networks and opportunities for solar-powered drone technology.
(1) Gupta, S., Ghonge, M., Jawandhiya, P. M. “Review of Unmanned Aircraft System (UAS)” International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), vol. 2, no. 4, 2014. Accessed on 5 Aug 2016.
 
(2) Pullen, John Patrick. “This Is How Drones Work.” TIME. TIME Inc., 3 Apr. 2015. Web. 1 Aug. 2016.
 
(3) AeroVironment. AeroVironment, Inc., 2016, www.avinc.com. Accessed 1 Aug. 2016.
 
(4) Burgess, Matt. “What’s next for Solar Impulse? Pilots reveal where their iconic plane is going to take them now.” WIRED. Condé Nast Publications, 27 July 2016. Web. 3 Aug. 2016.
 
(5) Cuthbertson, Anthony. “Google Tests Solar-Powered ‘5G’ Internet Drones” Newsweek. Newsweek LLC. 1 Feb. 2016. Web. 1 Aug. 2016.
 
(6) Vanian, Jonathan. “Facebook’s Solar-Powered Drone Just Hit a Big Milestone” Fortune. Time Inc. 21 July. 2016. Web. 1 Aug. 2016.
 
(7) Alta Devices. “White Paper: Selecting Solar Technology for Fixed Wing UAVs” 2015. pdf. 3 Aug. 2016.
 
(8) Small UAS Rule, Federal Aviation Administration § 107 (2016). Print.

​
Image: &copy; Ivan Cholakov | Dreamstime.com - <a href="https://www.dreamstime.com/stock-photo-drone-over-us-city-surveillance-flying-image57023398#res14972580">Drone over US city</a>
0 Comments

    Author

    Write something about yourself. No need to be fancy, just an overview.

    Archives

    August 2016
    June 2016

    Categories

    All

    RSS Feed

Services

Intelligence
Commentary
Stocks

Company

About
​
Team

Support

Contact
Terms of Use
All content © 2015 - 2018 Global Intelligence Trust, LLC. All rights reserved.
​○ 10940 Wilshire Blvd Suite 600 Los Angeles, California 90024, USA ○
  • About Us
  • Contact Us
  • Openings
  • Intelligence
    • National >
      • Iran
      • Israel
      • Lebanon
      • Russia
      • Syria
    • Transnational >
      • Commercial Industry >
        • Agriculture
        • Communications and Computers
        • Energy
        • Finance
        • Minerals
        • Transportation
      • Conventional Weapons
      • Defense Industry >
        • Defense Comm
      • Environmental >
        • Innovations
        • Security
      • Finance and Markets >
        • Economics
        • Trade and International Business
      • Geopolitics and Risk >
        • Africa
        • Europe
      • Health >
        • Health and Security
        • Innovations
      • Missile Defense >
        • Missile Def Comm
      • Narcotics >
        • Narcotics Comm
      • Weapons of Mass Destruction >
        • Chemical Weapons
        • Biological Weapons
        • Radiological Weapons
        • Nuclear Weapons
    • Frontier >
      • Arctic >
        • Security
        • Resources
      • Cyber >
        • Civilian Cyber Threats/Uses
        • State/Military Cyber Threats/Uses
      • Space >
        • Intelligence, Surveillance, Reconnaissance (ISR)
        • Access
        • Weapons
  • Specialist Commentary
    • By Author
  • Stock Center
    • Interactive Charts >
      • Aerospace-Defense
      • Construction Services
      • Cyber
      • Energy
      • Info-Comm Tech (ICT)
      • Manufacturing
      • Waste Management
    • Market Data
  • Team
  • About Us
  • Contact Us
  • Openings
  • Intelligence
    • National >
      • Iran
      • Israel
      • Lebanon
      • Russia
      • Syria
    • Transnational >
      • Commercial Industry >
        • Agriculture
        • Communications and Computers
        • Energy
        • Finance
        • Minerals
        • Transportation
      • Conventional Weapons
      • Defense Industry >
        • Defense Comm
      • Environmental >
        • Innovations
        • Security
      • Finance and Markets >
        • Economics
        • Trade and International Business
      • Geopolitics and Risk >
        • Africa
        • Europe
      • Health >
        • Health and Security
        • Innovations
      • Missile Defense >
        • Missile Def Comm
      • Narcotics >
        • Narcotics Comm
      • Weapons of Mass Destruction >
        • Chemical Weapons
        • Biological Weapons
        • Radiological Weapons
        • Nuclear Weapons
    • Frontier >
      • Arctic >
        • Security
        • Resources
      • Cyber >
        • Civilian Cyber Threats/Uses
        • State/Military Cyber Threats/Uses
      • Space >
        • Intelligence, Surveillance, Reconnaissance (ISR)
        • Access
        • Weapons
  • Specialist Commentary
    • By Author
  • Stock Center
    • Interactive Charts >
      • Aerospace-Defense
      • Construction Services
      • Cyber
      • Energy
      • Info-Comm Tech (ICT)
      • Manufacturing
      • Waste Management
    • Market Data
  • Team